Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.

Identifieur interne : 000400 ( Main/Exploration ); précédent : 000399; suivant : 000401

Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.

Auteurs : Olga Gorelenkova Miller [États-Unis] ; Jessica Belle Behring [États-Unis] ; Sandra L. Siedlak [États-Unis] ; Sirui Jiang [États-Unis] ; Reiko Matsui [États-Unis] ; Markus M. Bachschmid [États-Unis] ; Xiongwei Zhu [États-Unis] ; John J. Mieyal [États-Unis]

Source :

RBID : pubmed:27224303

Descripteurs français

English descriptors

Abstract

AIMS

Neuroinflammation and redox dysfunction are recognized factors in Parkinson's disease (PD) pathogenesis, and diabetes is implicated as a potentially predisposing condition. Remarkably, upregulation of glutaredoxin-1 (Grx1) is implicated in regulation of inflammatory responses in various disease contexts, including diabetes. In this study, we investigated the potential impact of Grx1 upregulation in the central nervous system on dopaminergic (DA) viability.

RESULTS

Increased GLRX copy number in PD patients was associated with earlier PD onset, and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-alpha (TNF-α) in mouse and human brain samples, prompting mechanistic in vitro studies. Grx1 content/activity in microglia was upregulated by lipopolysaccharide (LPS), or TNF-α, treatment. Adenoviral overexpression of Grx1, matching the extent of induction by LPS, increased microglial activation; Grx1 silencing diminished activation. Selective inhibitors/probes of nuclear factor κB (NF-κB) activation revealed glrx1 induction to be mediated by the Nurr1/NF-κB axis. Upregulation of Grx1 in microglia corresponded to increased death of neuronal cells in coculture. With a mouse diabetes model of diet-induced insulin resistance, we found upregulation of Grx1 in brain was associated with DA loss (decreased tyrosine hydroxylase [TH]; diminished TH-positive striatal axonal terminals); these effects were not seen with Grx1-knockout mice.

INNOVATION

Our results indicate that Grx1 upregulation promotes neuroinflammation and consequent neuronal cell death in vitro, and synergizes with proinflammatory insults to promote DA loss in vivo. Our findings also suggest a genetic link between elevated Grx1 and PD development.

CONCLUSION

In vitro and in vivo data suggest Grx1 upregulation promotes neurotoxic neuroinflammation, potentially contributing to PD. Antioxid. Redox Signal. 25, 967-982.


DOI: 10.1089/ars.2015.6598
PubMed: 27224303
PubMed Central: PMC5175443


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.</title>
<author>
<name sortKey="Gorelenkova Miller, Olga" sort="Gorelenkova Miller, Olga" uniqKey="Gorelenkova Miller O" first="Olga" last="Gorelenkova Miller">Olga Gorelenkova Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Behring, Jessica Belle" sort="Behring, Jessica Belle" uniqKey="Behring J" first="Jessica Belle" last="Behring">Jessica Belle Behring</name>
<affiliation wicri:level="2">
<nlm:affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Siedlak, Sandra L" sort="Siedlak, Sandra L" uniqKey="Siedlak S" first="Sandra L" last="Siedlak">Sandra L. Siedlak</name>
<affiliation wicri:level="2">
<nlm:affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Sirui" sort="Jiang, Sirui" uniqKey="Jiang S" first="Sirui" last="Jiang">Sirui Jiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<affiliation wicri:level="2">
<nlm:affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xiongwei" sort="Zhu, Xiongwei" uniqKey="Zhu X" first="Xiongwei" last="Zhu">Xiongwei Zhu</name>
<affiliation wicri:level="2">
<nlm:affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>4 Louis Stokes Cleveland Veterans Administration Medical Research Center , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>4 Louis Stokes Cleveland Veterans Administration Medical Research Center , Cleveland</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27224303</idno>
<idno type="pmid">27224303</idno>
<idno type="doi">10.1089/ars.2015.6598</idno>
<idno type="pmc">PMC5175443</idno>
<idno type="wicri:Area/Main/Corpus">000434</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000434</idno>
<idno type="wicri:Area/Main/Curation">000434</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000434</idno>
<idno type="wicri:Area/Main/Exploration">000434</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.</title>
<author>
<name sortKey="Gorelenkova Miller, Olga" sort="Gorelenkova Miller, Olga" uniqKey="Gorelenkova Miller O" first="Olga" last="Gorelenkova Miller">Olga Gorelenkova Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Behring, Jessica Belle" sort="Behring, Jessica Belle" uniqKey="Behring J" first="Jessica Belle" last="Behring">Jessica Belle Behring</name>
<affiliation wicri:level="2">
<nlm:affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Siedlak, Sandra L" sort="Siedlak, Sandra L" uniqKey="Siedlak S" first="Sandra L" last="Siedlak">Sandra L. Siedlak</name>
<affiliation wicri:level="2">
<nlm:affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Sirui" sort="Jiang, Sirui" uniqKey="Jiang S" first="Sirui" last="Jiang">Sirui Jiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<affiliation wicri:level="2">
<nlm:affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xiongwei" sort="Zhu, Xiongwei" uniqKey="Zhu X" first="Xiongwei" last="Zhu">Xiongwei Zhu</name>
<affiliation wicri:level="2">
<nlm:affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>4 Louis Stokes Cleveland Veterans Administration Medical Research Center , Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>4 Louis Stokes Cleveland Veterans Administration Medical Research Center , Cleveland</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Death (MeSH)</term>
<term>Cytokines (metabolism)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Dopamine (metabolism)</term>
<term>Dopaminergic Neurons (metabolism)</term>
<term>Dopaminergic Neurons (pathology)</term>
<term>Gene Dosage (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Genetic Predisposition to Disease (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Inflammation Mediators (metabolism)</term>
<term>Lipopolysaccharides (immunology)</term>
<term>Mice (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>Microglia (immunology)</term>
<term>Microglia (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>Neurodegenerative Diseases (genetics)</term>
<term>Neurodegenerative Diseases (immunology)</term>
<term>Neurodegenerative Diseases (metabolism)</term>
<term>Neurodegenerative Diseases (pathology)</term>
<term>Neurons (metabolism)</term>
<term>Neurons (pathology)</term>
<term>Nuclear Receptor Subfamily 4, Group A, Member 2 (metabolism)</term>
<term>Parkinson Disease (genetics)</term>
<term>Parkinson Disease (immunology)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Parkinson Disease (pathology)</term>
<term>Rats (MeSH)</term>
<term>Transcription Factor AP-1 (metabolism)</term>
<term>Tyrosine 3-Monooxygenase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cytokines (métabolisme)</term>
<term>Dopamine (métabolisme)</term>
<term>Dosage génique (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Facteur de transcription AP-1 (métabolisme)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lipopolysaccharides (immunologie)</term>
<term>Maladie de Parkinson (anatomopathologie)</term>
<term>Maladie de Parkinson (génétique)</term>
<term>Maladie de Parkinson (immunologie)</term>
<term>Maladie de Parkinson (métabolisme)</term>
<term>Maladies neurodégénératives (anatomopathologie)</term>
<term>Maladies neurodégénératives (génétique)</term>
<term>Maladies neurodégénératives (immunologie)</term>
<term>Maladies neurodégénératives (métabolisme)</term>
<term>Membre-2 du groupe A de la sous-famille-4 de récepteurs nucléaires (métabolisme)</term>
<term>Microglie (immunologie)</term>
<term>Microglie (métabolisme)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mort cellulaire (MeSH)</term>
<term>Médiateurs de l'inflammation (métabolisme)</term>
<term>Neurones (anatomopathologie)</term>
<term>Neurones (métabolisme)</term>
<term>Neurones dopaminergiques (anatomopathologie)</term>
<term>Neurones dopaminergiques (métabolisme)</term>
<term>Prédisposition génétique à une maladie (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris knockout (MeSH)</term>
<term>Tyrosine 3-monooxygenase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytokines</term>
<term>Dopamine</term>
<term>Glutaredoxins</term>
<term>Inflammation Mediators</term>
<term>NF-kappa B</term>
<term>Nuclear Receptor Subfamily 4, Group A, Member 2</term>
<term>Transcription Factor AP-1</term>
<term>Tyrosine 3-Monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Maladie de Parkinson</term>
<term>Maladies neurodégénératives</term>
<term>Neurones</term>
<term>Neurones dopaminergiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Neurodegenerative Diseases</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Maladie de Parkinson</term>
<term>Maladies neurodégénératives</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Lipopolysaccharides</term>
<term>Maladie de Parkinson</term>
<term>Maladies neurodégénératives</term>
<term>Microglie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Microglia</term>
<term>Neurodegenerative Diseases</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dopaminergic Neurons</term>
<term>Microglia</term>
<term>Neurodegenerative Diseases</term>
<term>Neurons</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytokines</term>
<term>Dopamine</term>
<term>Facteur de transcription AP-1</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Glutarédoxines</term>
<term>Maladie de Parkinson</term>
<term>Maladies neurodégénératives</term>
<term>Membre-2 du groupe A de la sous-famille-4 de récepteurs nucléaires</term>
<term>Microglie</term>
<term>Médiateurs de l'inflammation</term>
<term>Neurones</term>
<term>Neurones dopaminergiques</term>
<term>Tyrosine 3-monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Dopaminergic Neurons</term>
<term>Neurodegenerative Diseases</term>
<term>Neurons</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Death</term>
<term>Disease Models, Animal</term>
<term>Gene Dosage</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation</term>
<term>Gene Silencing</term>
<term>Genetic Predisposition to Disease</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Models, Biological</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Dosage génique</term>
<term>Expression des gènes</term>
<term>Extinction de l'expression des gènes</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Modèles biologiques</term>
<term>Mort cellulaire</term>
<term>Prédisposition génétique à une maladie</term>
<term>Rats</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
<term>Souris knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>Neuroinflammation and redox dysfunction are recognized factors in Parkinson's disease (PD) pathogenesis, and diabetes is implicated as a potentially predisposing condition. Remarkably, upregulation of glutaredoxin-1 (Grx1) is implicated in regulation of inflammatory responses in various disease contexts, including diabetes. In this study, we investigated the potential impact of Grx1 upregulation in the central nervous system on dopaminergic (DA) viability.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Increased GLRX copy number in PD patients was associated with earlier PD onset, and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-alpha (TNF-α) in mouse and human brain samples, prompting mechanistic in vitro studies. Grx1 content/activity in microglia was upregulated by lipopolysaccharide (LPS), or TNF-α, treatment. Adenoviral overexpression of Grx1, matching the extent of induction by LPS, increased microglial activation; Grx1 silencing diminished activation. Selective inhibitors/probes of nuclear factor κB (NF-κB) activation revealed glrx1 induction to be mediated by the Nurr1/NF-κB axis. Upregulation of Grx1 in microglia corresponded to increased death of neuronal cells in coculture. With a mouse diabetes model of diet-induced insulin resistance, we found upregulation of Grx1 in brain was associated with DA loss (decreased tyrosine hydroxylase [TH]; diminished TH-positive striatal axonal terminals); these effects were not seen with Grx1-knockout mice.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>INNOVATION</b>
</p>
<p>Our results indicate that Grx1 upregulation promotes neuroinflammation and consequent neuronal cell death in vitro, and synergizes with proinflammatory insults to promote DA loss in vivo. Our findings also suggest a genetic link between elevated Grx1 and PD development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In vitro and in vivo data suggest Grx1 upregulation promotes neurotoxic neuroinflammation, potentially contributing to PD. Antioxid. Redox Signal. 25, 967-982.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27224303</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2016</Year>
<Month>12</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.</ArticleTitle>
<Pagination>
<MedlinePgn>967-982</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="AIMS">Neuroinflammation and redox dysfunction are recognized factors in Parkinson's disease (PD) pathogenesis, and diabetes is implicated as a potentially predisposing condition. Remarkably, upregulation of glutaredoxin-1 (Grx1) is implicated in regulation of inflammatory responses in various disease contexts, including diabetes. In this study, we investigated the potential impact of Grx1 upregulation in the central nervous system on dopaminergic (DA) viability.</AbstractText>
<AbstractText Label="RESULTS">Increased GLRX copy number in PD patients was associated with earlier PD onset, and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-alpha (TNF-α) in mouse and human brain samples, prompting mechanistic in vitro studies. Grx1 content/activity in microglia was upregulated by lipopolysaccharide (LPS), or TNF-α, treatment. Adenoviral overexpression of Grx1, matching the extent of induction by LPS, increased microglial activation; Grx1 silencing diminished activation. Selective inhibitors/probes of nuclear factor κB (NF-κB) activation revealed glrx1 induction to be mediated by the Nurr1/NF-κB axis. Upregulation of Grx1 in microglia corresponded to increased death of neuronal cells in coculture. With a mouse diabetes model of diet-induced insulin resistance, we found upregulation of Grx1 in brain was associated with DA loss (decreased tyrosine hydroxylase [TH]; diminished TH-positive striatal axonal terminals); these effects were not seen with Grx1-knockout mice.</AbstractText>
<AbstractText Label="INNOVATION">Our results indicate that Grx1 upregulation promotes neuroinflammation and consequent neuronal cell death in vitro, and synergizes with proinflammatory insults to promote DA loss in vivo. Our findings also suggest a genetic link between elevated Grx1 and PD development.</AbstractText>
<AbstractText Label="CONCLUSION">In vitro and in vivo data suggest Grx1 upregulation promotes neurotoxic neuroinflammation, potentially contributing to PD. Antioxid. Redox Signal. 25, 967-982.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gorelenkova Miller</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Behring</LastName>
<ForeName>Jessica Belle</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siedlak</LastName>
<ForeName>Sandra L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Sirui</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bachschmid</LastName>
<ForeName>Markus M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>2 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xiongwei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>3 Department of Pathology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>4 Louis Stokes Cleveland Veterans Administration Medical Research Center , Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 NS085503</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 NS077888</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL133013</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007501</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK103750</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007250</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018836">Inflammation Mediators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057126">Nuclear Receptor Subfamily 4, Group A, Member 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018808">Transcription Factor AP-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.16.2</RegistryNumber>
<NameOfSubstance UI="D014446">Tyrosine 3-Monooxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059290" MajorTopicYN="N">Dopaminergic Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018836" MajorTopicYN="N">Inflammation Mediators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017628" MajorTopicYN="N">Microglia</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019636" MajorTopicYN="N">Neurodegenerative Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057126" MajorTopicYN="N">Nuclear Receptor Subfamily 4, Group A, Member 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018808" MajorTopicYN="N">Transcription Factor AP-1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014446" MajorTopicYN="N">Tyrosine 3-Monooxygenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="Y">diabetes</Keyword>
<Keyword MajorTopicYN="Y">microglia</Keyword>
<Keyword MajorTopicYN="Y">neuroinflammation glutaredoxin</Keyword>
</KeywordList>
<CoiStatement>Author Disclosure Statement No competing financial interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27224303</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2015.6598</ArticleId>
<ArticleId IdType="pmc">PMC5175443</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2012 Apr;26(4):1473-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2010 Jul;116(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2012 Apr 10;125(14):1757-64, S1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Jul 25;32(30):10117-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22836247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2010 Mar;37(3):630-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Aug 07;15:661</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25102989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Mar 1;24(5):1322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jul;1840(7):2162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24641824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 14;289(11):7293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetologia. 2005 Apr;48(4):675-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15729571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2013 Dec;62(6):1105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 May 1;52(9):1844-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2006 Jul;55(7):2153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16804088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Mar 30;49(12):2715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2013 Sep;139(3):313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 31;302(5646):841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 18;29(11):3365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19295143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Oct;63:446-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1994 Jan 3;165(1-2):208-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8015728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2006 Oct 25;7:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Aug 28;10(8):e0136564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chin Med J (Engl). 2010 Apr 20;123(8):1086-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20497720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 30;289(22):15611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24722990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 27;10(3):e0121072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1988 Feb 1;48(3):544-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3257167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2011 Feb;227(2):237-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21093436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2013 Mar;28(3):311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23436720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem Struct Biol. 2012;88:69-132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22814707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Res. 2009 Nov;65(3):252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2001 Sep;21(9):1483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12 ):8633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Mar 15;38(6):806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15721991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2016 Jan;22(1):54-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26618722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2013 Aug;246:72-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22285449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2014;2014:729194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24955210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2012 Jan;45(1):529-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21971528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med Genet B Neuropsychiatr Genet. 2005 Aug 5;137B(1):5-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15965975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2013 Nov;9(11):629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24126627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1102-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jul 3;158(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24995975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2013 Feb;136(Pt 2):374-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2015;2015:181643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26257839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2007 Nov;13(11):460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18029230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1082-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2015 Sep;89(9):1439-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25827102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Apr 3;137(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19345186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2012 Mar;7(1):42-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21728035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Sep 13;26(37):9365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Gorelenkova Miller, Olga" sort="Gorelenkova Miller, Olga" uniqKey="Gorelenkova Miller O" first="Olga" last="Gorelenkova Miller">Olga Gorelenkova Miller</name>
</region>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<name sortKey="Behring, Jessica Belle" sort="Behring, Jessica Belle" uniqKey="Behring J" first="Jessica Belle" last="Behring">Jessica Belle Behring</name>
<name sortKey="Jiang, Sirui" sort="Jiang, Sirui" uniqKey="Jiang S" first="Sirui" last="Jiang">Sirui Jiang</name>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<name sortKey="Siedlak, Sandra L" sort="Siedlak, Sandra L" uniqKey="Siedlak S" first="Sandra L" last="Siedlak">Sandra L. Siedlak</name>
<name sortKey="Zhu, Xiongwei" sort="Zhu, Xiongwei" uniqKey="Zhu X" first="Xiongwei" last="Zhu">Xiongwei Zhu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000400 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000400 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27224303
   |texte=   Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27224303" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020